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ABSTRACT 

coupling corrections on tests of the 
actions is discussed. The two loop 
this paper were performed using the 

An estimate is also provided of the 
to asymptotic scaling for the Wilson 

Mdnte Carlo simulation of Lattice QCD is carried out at finite, 
large. values of the bare coupling g, but the continuum limit of the 
theory corresponds to vanishing g. When extracting physical results 
from lattice calculations it is therefore important to correct for 
the non-zero value of the coupling constant. In this paper I report 
on the result of s3me perturbative calculations, mostly perormed in 
collaboration with G. Martinelli',', which address this question. 

On the latticz any physical quantity (of mass dimension d). is 
proportional to AL. Under a change of the lattice action AL changes 
but, according to universality, physical quantities must renain the 
same. So in the continuum limit, the value of a mass m calculated 
using two different lattice actions is, 

m = kA L = k'AL' (1) 

The measurement of the ratio k'/k provides an estimate of AL/AL*. 
The ratio of A parameters is calculable in weak coupling 
perturbation theory so that eq.(l) can be used to check universality 
in the continuum limit. In the limit as the lattice spacing a tends 
to zero the bare coupling of SU(N) gauge theory varies according to 
the renormalization group equation, 

c&(a) 
a -= 

da 
-6(g) = bCg3(a) + b,g5(a) + b2g7(a) + O(g'(a)) (2) 

The scale parameter AL is fixed by the solution to this equation, 

**a* L 
(b;-b,b,)g*) eXP (- L - bog2 ln(bog2)) (3) 

The first ttio coefficients of the beta function g(g) are universal 
and given in pure SU(N) gauge theory by, 



3 FERMILAB-CONF-84/41 -T 

(4) 

The coefficient b, is dependent on the regularization scheme 
and is known only for the dimensionally regularized continuum 
theory. Since it is unknown for the lattice regulated theory, AL is 
determined “erperimentallySV from eq. (3) retaining only the 
exponential factor. We refer to this simplified form of eq. (3) aa 
asymptotic scaling. The relationship between the b, of different 
lattice actions, necessary for a check of universality, can be 
obtained from a two loop calculation. Consider two lattice actions 
whose coupling constants are related in the weak coupling regionby, 

1 

g’2(a’) 
= --!-- [l+g2(a)(boL 

g*(a) 
+ co) + g’(a)(b,L + c,) + . ..J (5) 

and the coefficients of the logarithm L = In (a2/a12) are governed 
by the renormalization group equation. If the coupling constant 
g(a) satisfies eq (2) with coefficients bo,b, and b, then g’(a) 
satisifes the same equation with the same coefficients bo,b,, but 
with b: given by, 

b; = b2+ (b,cO-bnc,) (6) 

The theoretical ratio of the A parameters is fixed by a one loop 
calculation, 

*L - = exp 
*L’ 

(7) 

Assuming the g2 and g ‘* are approximately equal and given by’g’ in 
the scaling window of Monte Carlo data, the experimental ratio of A 
parameters can be corrected”, 

AL AL -- 
AL’ - ( 

1 - 92dL L’ - 
, )( ) AL’ exp 

The correction factor 6 is given by, 

6 = -!- (b,,c,-b,cC) L,L’ 2b2 
0 

(9) 

The constants c, and c, will be obtained from the effective action 
of the two lattice theories calculated using the background field 
method. 



4 FEBMILAE-CONF-84/41-T 

THE BACKGROUND FIELD METHOD 

In this section I outline the background field method* and give 
an example of its use in the continuum. The background field is 
introduced by writing the normal Yang-Mills Lagrangian as the sum of 
the quantum field Q and the batikground field B . The gauge fixing 
term which breaks “the gauge invariance tiith respect to 
transformations of the quantum field is chosen in such a way that 
the invariance of the action under gauge transformation of the 
background field is preserved. The generating functional is given 
by, 

Z[J,B] = ICdQl acC 
auD 

exp i jd”x(L(Q+B,) - &-(CAj2 + J>i) (10) 
0 

where the gauge fixing function is, 

GA = (av'aAC- pofABCB&) QE (11) . . 
It can be shown that the effective action of the background 

field is equal to the normal effective action of the theory 
calculated with an unusual gauge fixing term. Wave function 
renormalization of the quantum field is not necessary since the 
quantum field occurs only on internal lines. However 
renormalization of the gauge parameter is still necessary. the 
result for the two point function of the theory - the effective 
action - in the gauge specified by eq (11) is, 

fu”(p,3,a,u) = - (gu”p2- p’p”)(l-g2do-g”d,) (12) 

where5, 

d, = (-$12te + 3" p -F <(3) - a (2 + F p -t 5(3)) 
3 

- CL2 ($ + 3 p + g c(3)) - a'(% - + p) - 5 4l . (13) 

and p = In477Y -ln(-p2/p2) 
function in the fi 

Eq (13) is the renormalized two point 
S scheme. ’ The -values of the renormalization’ 

constants in thisscheme are’, 



5 FERMILAB-CONF-84141-T 

“0 
= ZQcl , 

g0 = g uczg. B; = EBB' , zg Jz, = 1 

zB=l+g 2 b. 
y + g4 

bl x + oh35 

and renormalization is performed as usual. 

ry ( P.gO.Qo,E) = z;' rp"(p.g,a,v) 

(14) 

(15) 

The results given in eq (13) constitute the first step in the 
calculation of the relationship between continuum and lattice A 
parameters in two loops using the background field method. Hoirever 
the lattice part of this calculation has not yet been perfbrmed. 

PERTURBATIVE CORRECTIONS AND TESTS OF UNIVERSALITY 

I now report the results of the two loop lattice calculation 
which relates the A parameters of different lattice actions. The 
implementation of the background field method on the lattice has 
been described in the literature.' I work with a field strength 0 
which is defined from the lattice quantum field strength F and the 
background field strength f as follows, vu 

PU 
exp i 9 = exp igF 

NY 
exp i a2f 

)Iv (16) 

The general one plaquette lattice action can be expressed in 
terms of 4. Retaining all gauge invariant terms which can contribute 
in two loop order we have, 

s(q) = s2+ s 
I 

2 
S2= -$ 1 1 Tr $- 

& x uu 

and 

s4(Tr@l') + s6(Tr$) + tll(Tr@2)2 + 23 t6(Tr+ 1 
8 KPBV 

(18) 

+ u 
6 

(TrG2TrQ4) + Y 
6 (TrQ3j2 
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The term S, is common to all lattice actions; its normalization iS 
fixed because it contains the only term which survives in the naive 
continuum limit, 

S2* + i 1 Tr FuvFu,, (19) 
x u.v 

The coefficients s,, s. etc. determine the particular form of the 
lattice action. As an example I quote the Wilson action, which 
before summation over PlaqUetteS is, 

SW(P) = 6,jl - & Tr(U(P)+lJ+(P))) (20) 

Another action which has been used extensively contains in addition 
to the Wilson action an admixture of the adjOint representation, 

SFA(P) = BF(l - & Tr (U(P)+U+(P)))+6,(1 -$ ITrU(P)12) (21) 

The full details of the two loop calculation are given in ref. (1). 
The final result is the relationship between the coupling constant g 
of a arbitrary action, specified by the constants s,,,sa.tb etc. and 
the coupling constant gM ,of Manton action in which all sr,se.ti etc. 
are equal to zero. 

1 2N2-3 -wz 
2 12+ s 

Ir N 
+ t4(N2 + 1) + g2a,(s4(2N2-3) + t4N(N2 + 1)) 

gM g 

9 (N2-4) 
+‘68 N 

3 (2N2-3) (N2+3) -__ 
+ “6 8 N 

3 
+ t6 8 (N2 + 1)(N2 + 3)) 

(22) 

2; 2 g Is, 9N4 -3CN2+36 (2N2-3)(N2+ - -- 2) 

2N2 
+ zs4t,,--, N + tG(N2 + ,)cN2 + 2) j 

The result is completely analytic except for the quantity aB 
calculated in ref. (7) and approximately given by, 
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aR = - .OOll i .0002 (23) 

From eq. (22) we can compute the correction factors to the 
ratios of lattice A parameters using eq. (8). The results are 
given in Table II. The results of the full’ two ‘loop calculation 
given in Table II are very similar to the results obtained in 
ref. (3) where only tadpole diagrams were calculated. The 
significance of the corrections can be estimated using the 
approximate values of the coupling constant in the scaling window 
(g*=2 for SU(21, g2=1 for SU(3)). A comparison with the a,vailable 
data on SU(2) is shown‘ in Table III. The conclusion for the 
particular actions shown in Table III is that the corrections are 
modest in size, and tend to bring to data into better agreement with 
tp theory. The remaining discrepancy should be attributed to order 
a corrections which may be large at presently investigated values 
of the coupling constant. However in view of the large errors it is 
possible to argue that there is no further discrepancy. 

By way of contrast the correction ‘Ii FA. which’ relates the 
Wilson and mixed fundamental adjoigt actions is quite large. This 
is due to the large coefficient of r as shown in Table II. Despite 
the size of the correction it is still not sufficient to bring data 
into agreement with theory for 6 >0 

# 
where the perturbative 

approximation should work best. he experimental results on the 
mixed action can be understood using another approach. In the limit 
of large N the mixed action can be written in terms of a equivalent 
Wilson action with a coupling 
iterative relation, 

constant gW defined using the 

BW = BF + BA w ($-I + 0 (1); 
w N 

where 

dg2) = 
1 *F 6A 

BW = ~~2. BF = 2~2 , BA = N’ 

W 

(25) 

Eq. (24) may be improved using perturbative results and 
becomes; 

Bw = BF+ BA d& 
W 

B2 
(,- 3, - X&l?- 

N2 Bfi 64~~ 
(26) 

The expectation value of the plaquette variable has a perturbative 
exoansion 

~(+)=l-!f$-$-fi(aR 
ii’ 8~~ 

+ L!k$ ] ~$ 
w 

(27) 
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so that the perturbative corrections in eq. (26) are seen explicitly 
to be of order l/N+. Eq.(26), taken from ref. (11, corrects the 
expression of Jurkiewicz, Korthals Altes and Dash;“‘who overlooked 
the renormalization of the gauge parameter. The difference between 
the expression of ref. (11) and eq.(26) is numerically small for the 
values of the coupling constants BA1 BF of interest. The numerical 
results of ref. (11) therefore remain valid. 

CORRECTIONS TO RENORItiLIZATION GROUP BEHAVIOR. 

A separate question which is unanswered by the calculations of 
ref. (1) is whether or not the quantity b, is large for all lattice 
actions; In this case even though the corrections to the ratio of 

*L parameters is small, the use of eq. (3) to extract the 
experimental A without the inclusion of O(g*) terms would be 
unjustified. The continuum value of b, is known from the work of 
Tarasov et. al” and is given in SU(N) gauge theory by, 

bcont 
2 

- 2;547 (x-13 

16n2 
(28) 

The easiest way to calculate bk is to perform the two loop 
calculation which relates the lattice coupling constant to the 
continuum coupling constant. The first step in this. program using 
the background Eield method is given in eq. (13). A crude estimate 
of the size of b2 was obtained in ref. (2) by evaluating only the 
tadpole diagrams. The result for the Wilson action is as follows, 

1 AWa = (i+6Wg2+ 0(g4)j exp i- - - -3 ln(bog2,J 
2b0g2 2b; 

(29) 

where the correction term 6W is made up of three parts, 

‘W = 6cont + ‘cant M + 6M W (30) 
I. . 

6 
cant and % w are known exactly from refs. (12,l) respectively. 

6 
e%F ‘Yf 

is estfmated using the tadpole approximation. Note that 
the estimate of 6 were too small by an order OP 

magnitude the change in 66, wou “8”EeMless than 5% for SU(3). The 
conclusion to be drawn. from this estimate is that if. large 
departures from renormalization group behaviour are observed in 
Monte Carlo measurements of physical quantities they will not be 
removed by the inclusion oP the first perturbative corrections. At 
fixed R the perturbative corrections may be as much as 10%. In 
Monte Carlo experiments performed in a finite range of 8, ‘such a 
correction would lead to an observable deviation from 
renormal i~zation group behaviour which is much smaller. 
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TABLE I 

The coefficients in eq.(l8) which determine the form of one 
plaquette actions. r is defined as r = -2kTA/(6F+28A): 

s4 s4 '6 '6 t4 t4 t6 t6 '6 '6 '6 '6 

1 1 1 1 : : 
WILSON WILSON 

-3i -3i 720 720 
0 0 0 0 0 0 0 0 

FUNDAMENTAL FUNDAMENTAL 
+ ADJOINT + ADJOINT -4 -4 

1 1 
720 720 & O & O -& -& & & 

MANTON MANTON 0 0 0 0 0 0 0 0 0 0 0 0 

Ng2 Ng2 3g2 3g2 
HEAT KERNEL HEAT KERNEL - - 5760 5760 0 0 -zim5 -zim5 O O 0 0 0 0 

TABLE II 

The correction parameter 6L,L, for various of actions ins SU(2) 
and SU(3). 

I 6L,L' I 

1 

6L,L' SU(2) SU(2) I SU(3) SU(3) 
I , 

6M,li 
6M,li 4.48 4.48 10~~ 10~~ 0.132 0.132 

6M,FA 6M,FA 4.48 10~~ 4.48 10~~ + 3.37 10e2r + 1.26r2 + 3.37 10e2r + 1.26r2 0.132-1.26r + 1.37r2 0.132-1.26r + 1.37r2 

6M,HK 6M,HK 2.26 2.26 lO-3 lO-3 3.39 3.39 10-3 10-3 



TABLE III. 

Comparison of the theoretical ration of A parameters with SU(2) 
data with and without our correction included. The string tension 
data is taken from refs. ca,9). The data on’ the deconfinement 
temperature T.c comes from ref. (10). 

AM 
^w 

AM - 
%K 

String tension dat; 

Theory String tension data (Corrected) 

3.07 5.1* 1.0 4.7 

2.45 3.OkO.3 3.0 

TABLE IV 

Contributions to 6w 

rc data 

4.08 

2.60 

N 6 
cant ‘cant ,M &M,W %l 

2 -a.4xlo-3 -.3x10-3 44.8x10-3 37.x10-3 

3 -12.6x10-3 -.4x10-3 132.~10-~ 120.x10-3 


